-
29
2025/09
马克思主义理论学科的学术研究与论文写作
马克思主义理论学科的学术研究与论文写作。
-
27
2025/09
Incompressible and non-resistive limit of compressible magnetohydrodynamic equations
In this talk, we discuss theincompressible and non-resistive limit for the initial boundary value problemof isentropic compressible resistive magnetohydrodynamic equations withill-prepared initial data in three-dimensional bounded domains. We establishthe higher-order uniform estimates with respect to both the Mach number and theresistivity coefficient in the framework of new type of weighted Sobolevspaces. Thenwe obtain the strong convergence of the magnetic field and thedivergence-free component of the velocityfield, as both the Mach number and the resistivity coefficient tend tozero.
-
28
2025/09
智引未来 评育英才:构建数智化时代足球即时比分_365体育直播¥球探网特色教育考试评价新体系
为深入贯彻落实中共中央、国务院《深化新时代教育评价改革总体方案》精神及近期教育部足球即时比分_365体育直播¥球探网推进教育考试现代化、强化育人导向的相关部署,推动足球即时比分_365体育直播¥球探网省教育考试工作创新改革,足球即时比分_365体育直播¥球探网省教育考试评价研究中心召开首届学术论坛。
-
27
2025/09
2025年微分方程理论及其应用学术研讨会
9月27日8:30 开幕式9:10-9:55 欧耀彬(中国人民大学)Incompressible limit of strong solutions to compressible hydrodynamic equations9:55-10:15 休息10:15-11:00 郑神州(北京交通大学)具有间断系数的椭圆和抛物方程正则性11:00-11:45 李思泰(厦门大学)On the Maxwell-Bloch system in the sharp-line limit14:30-15:00 熊良林(云南开放大学)Hybrid Boundary Control for Stabilization and Synchronization of Semi-Markovian Reaction-Diffusion Neural Networks with Time-Varying Delays 15:00-15:30 陈明娟(暨南大学)Sharp Global well-posedness for the fourth-order nonlinear Schr?dinger equation15:30-16:00 王华阳(北京师范大学)若干非线性Dirac方程的非相对论极限的新进展 16:00-16:20 休 息16:20-16:50 余锐嘉(中山大学)Some Recent Progress on Compressible and Incompressible FENE Dumbbell Models 16:50-17:20 张锦绣(湖南工业大学)非线性复 Kuramoto-Tsuzuki 方程的有限差分方法研究9月28日 8:30-9:00 刘凯(湖南工业大学)具有弱奇异解的三维流动/非流动运输方程的平均L1-ADI紧致差分方法研究9:00-9:30 刘天源(湖南工业大学)带有多项弱奇异核的积分微分方程的CN-ADI紧致差分方法研究9:30-10:00 张钊祥(湖南工业大学)一类常系数三维双曲型方程的交替方向隐式差分格式和外推法10:00-11:30 自由讨论
-
29
2025/09
心理学的多种可能——人因工程与用户体验---留学回国人员学术汇报
(1)人因工程与用户体验的基本概念、发展历史及应用领域介绍;(2)结合天津大学访学经历,从心理学视角,探讨人因工程在产品设计、人机交互、医疗安全等领域的实际案例与研究成果;(3)分享用户体验研究方法与未来发展趋势。
-
27
2025/09
Integral Flows on Graphs and Signed Graphs
A signed graph G is a graph associated with a mapping σ: E(G) →{+1, ?1}. Let G be a graph/signed graph with an orientation on each edge and let A be an abelian group. A function f, from the edge set E(G) of G to the nonzero elements of A, is call an A-flow of G if at each vertex v ∈ V (G), the sum of f(e) over every e with head v is equal to the sum of f(e) over every e with tail v. Tutte conjectured that if a graph has a Z-flow, then it has a Z-flow f such tat |f(e)| ≤ 4 for each e ∈ E(G), which is related to graphs embedded in orientable surfaces. Bouchet conjectured that if a signed graph has a Z-flow, then it has a Z-flow f such tat |f(e)| ≤ 5 for each e ∈ E(G), which is related to graphs embedded in nonorientable surfaces. The theory of flows has a strong connection with the coloring of graphs. In this talk, we focus on recent results on flows of signed graphs.
-
26
2025/09
虚拟元方法的基础理论和程序实现
本报告主要介绍虚拟元方法的基础理论与程序实现,包括多边形网格剖分、虚拟元空间的定义、离散格式的构造、稳定性分析以及虚拟元方法的优势。以Poisson问题为例,介绍虚拟元方法程序实现代码。针对虚拟元方法的最近进展,本报告将介绍曲边虚拟元方法、高阶问题虚拟元方法、Serendipity和Stokes虚拟元方法等。
-
26
2025/09
Ramsey and (bipartite) Gallai-Ramsey numbers for some families of graphs
Given two graphs G and H, the Ramsey number R(G,H) is defined as the minimum number of vertices n such that every red-blue edge-coloring of the complete graph K_n contains either a red copy of G or a blue copy of H. If G is isomorphic to H, then we write R(G) for short. For any positive integer k, the Gallai-Ramsey number gr_k(G:H) is the minimum number of vertices n such that any exact k-edge coloring of K_n contains either a rainbow copy of G or a monochromatic copy of H. The bipartite Gallai-Ramsey number bgr_k(G:H) is the minimum number of vertices n such that for every N greater than or equal to n, any exact k-edge coloring of the complete bipartite graph K_{N,N} contains a rainbow copy of G or a monochromatic copy of H. In this talk, we describe the structures of a complete bipartite graph K_{n,n} without small rainbow subgraphs and determine the Ramsey and bipartite Gallai-Ramsey numbers for some families of graphs.
-
26
2025/09
思考法律:想词与想事
一、界定“词”与“事”:法律思维的两维二、“词”与“事”的张力:法律适用的核心挑战三、从冲突到融合:优秀法律人的实践智慧四、超越二元:法律思维的最高境界是“事理”化为“法理”
-
27
2025/09
文苑大讲堂2025年第29讲: 现代汉语语音教学难点与方法 (周末专家足球即时比分_365体育直播¥球探网行)
一、汉语语音教学原则1.音素教学与语流教学相结合的原则;2.针对不同学习者的特点进行教学的原则;3.贯穿教学始终,适应不同阶段的教学目标。二、汉语语音教学难点1.声母教学难点;2.韵母教学难点;3.声调教学难点;4.拼音方案带来的教学难点。三、汉语语音教学方法和技巧1.直观演示法;2.夸张法;3.对比听辨;4.以旧带新;5.拖音法;6.声调组合;7.模仿法。